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A B S T R A C T

The goal of this preliminary proof-of-concept study was to use human protein microarrays to identify blood-
based autoantibody biomarkers capable of diagnosing multiple sclerosis (MS). Using sera from 112 subjects,
including 51 MS subjects, autoantibody biomarkers effectively differentiated MS subjects from age- and gender-
matched normal and breast cancer controls with 95.0% and 100% overall accuracy, but not from subjects with
Parkinson's disease. Autoantibody biomarkers were also useful in distinguishing subjects with the relapsing-
remitting form of MS from those with the secondary progressive subtype. These results demonstrate that
autoantibodies can be used as noninvasive blood-based biomarkers for the detection and subtyping of MS.

1. Introduction

Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease
that primarily affects white matter of the central nervous system (CNS)
(Kis et al., 2008; Reynolds et al., 2011; Sanai et al., 2016). Recent
estimates show that between 250,000 and 350,000 people in the United
States currently suffer from MS (Sanai et al., 2016; Miller and Hens,
1993). As is the case with many autoimmune conditions, women are
disproportionately affected by MS, with a ratio of three women for
every one man diagnosed (Sanai et al., 2016; Harbo et al., 2013). The
reason for this discrepancy in gender is unknown, but it is speculated to
be influenced by hormonal, genetic, or environmental differences
(Harbo et al., 2013). Currently, MS is pathologically characterized by
subcortical white matter lesions separated temporally and spatially,
with microscopic structural defects accruing in the myelin sheaths that
insulate axons for proper neuronal firing (Miller and Hens, 1993; Diaz-
Sanchez et al., 2006; Bitsch et al., 2000). Demyelination occurs
commonly in the white matter of the brain, including in the optic
nerve and spinal cord, but later progresses to include gray matter
lesions that are readily visualized in magnetic resonance images (MRIs).
Common symptoms include lower extremity muscle weakness, par-

esthesias, vision changes, and later, cognitive decline as the disease
progresses (Jurynczyk et al., 2015; Harris and Sadiq, 2014).

Presently, a diagnosis of MS involves a thorough patient history,
imaging such as MRI to detect white matter lesions, an electrophysio-
logical examination using evoked potential tests, and cerebrospinal
fluid (CSF) analysis to detect the presence of increased immunoglobulin
species (Birnbaum, 2006). While some success has been achieved to
accurately diagnose and treat the symptoms of some patients, others
succumb to progressively worsening disease symptoms and opportu-
nistic conditions (Evlice et al., 2016; Noseworthy, 1994; Daumer et al.,
2009). Due to the autoimmune nature of MS, much research attention
has focused on specific components of the immune system to attempt to
identify and diagnose patients at the earliest possible stage of their
disease. For instance, autoantibodies targeting myelin surface proteins,
such as myelin oligodendrocyte glycoprotein, myelin basic protein,
myelin proteolipid protein, and myelin-associated glycoprotein, have
demonstrated either associative or correlative links to MS, however,
they currently lack utility as accurate diagnostic biomarkers (Harris and
Sadiq, 2014; D'Ambrosio et al., 2015; Schirmer et al., 2014; Axelsson
et al., 2011; Greeve et al., 2007; Tomassini et al., 2007). Other
autoantibody targets with growing interest are glycans, and include
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anti-GAGA4 or anti-glucose antibodies, as well as other cell surface ion
channel proteins like KIR4.1 (Brettschneider et al., 2009; Freedman
et al., 2009; Srivastava et al., 2012). Despite the abundance of potential
biomarker candidates, thus far there is no definitive biofluid test
capable of accurately diagnosing MS or monitoring its progression.

In several previous studies, we demonstrated the utility of blood-
borne autoantibodies as sensitive and specific biomarkers capable of
diagnosing and staging Alzheimer's and Parkinson's diseases at early
stages with high overall accuracy, as well as successfully differentiating
them from other neurodegenerative and non-neurodegenerative dis-
eases (E. Nagele et al., 2011; Han et al., 2012; DeMarshall et al., 2016;
C.A. DeMarshall et al., 2015). In the present study, our objective was to
use this strategy to determine if autoantibodies can also be used as
blood-based biomarkers to diagnose individuals with MS using sera
from MS subjects afflicted with either the relapsing-remitting MS
(RRMS) or secondary progressive MS (SPMS) subtype, the two most
prevalent clinical courses of this disease. Roughly 80% of all MS
patients are initially diagnosed with RRMS and, during the course of
their disease, more than 60% of RRMS patients will transition to SPMS
(Compston and Coles, 2002). Our results show that a panel of autoanti-
body biomarkers can be used to differentiate patients with MS from
appropriate age- and gender-matched control subjects with an overall
accuracy of 95.0%. We also identified additional autoantibody biomar-
ker panels that are subtype-specific for RRMS or SPMS, and then used
each of these panels to successfully differentiate these MS subtypes.
Using RRMS-specific autoantibody biomarkers, we were able to differ-
entiate RRMS patients from SPMS patients with 100.0% accuracy.
Similarly, SPMS-specific autoantibody biomarkers were capable of
differentiating SPMS patients from RRMS patients with 92.0% accu-
racy. These comparisons demonstrate the potential of autoantibody
biomarker panels to effectively and sequentially stage the clinical
course of MS, as well as possibly identify the point of transition
between subtypes. Finally, MS subjects were also readily distinguished
from those with breast cancer, a non-neurodegenerative disease control
group, with comparable accuracy.

2. Methods

2.1. Ethics statement

Approval for the use of serum samples in this study was obtained
from the Rowan-Stratford Institutional Review Board.

2.2. Study population

Thirty-one relapsing-remitting multiple sclerosis (RRMS) and
twenty secondary progressive multiple sclerosis (SPMS) serum samples
were obtained from BioServe Biotechnologies, Ltd. (Beltsville, MD).
Fifteen early-stage PD samples were obtained from the Parkinson's
Study Group (Boston, MA), and fifteen stage 3–4 breast cancer samples
were obtained from BioServe Biotechnologies, Ltd. Healthy control
samples were obtained from a variety of sources, including two from
Analytical Biological Systems, Inc. (Wilmington, DE), twenty-eight from
BioServe Biotechnologies, Ltd., and one from Asterand, Inc. (Detroit, MI).
All samples were handled using standard procedures and stored at
−80 °C until use, and freezer conditions were monitored using
Sensaphone 1400 (Phonetics, Inc., Aston, PA). Demographic character-
istics of the study population are listed in Table 1.

2.3. Human protein microarrays

To identify autoantibodies in human sera, we used Invitrogen's
ProtoArray v5.1 Human Protein Microarrays (Cat. No. PAH0525020,
Invitrogen, Carlsbad, CA, USA), each containing 9,486 unique human
protein antigens (www.invitrogen.com/protoarray). All proteins were
expressed as GST fusion proteins in insect cells, purified under native

conditions, and spotted in duplicate onto nitrocellulose-coated glass
slides. Arrays were probed with serum and scanned according to the
manufacturer's instructions using commercially prepared reagents.
Microarray slides were blocked (Blocking Buffer, Cat. No. PA055,
Invitrogen) and then each was incubated with serum diluted to 1:500
in washing buffer. After washing, arrays were probed with anti-human
IgG (H + L) conjugated to AlexaFluor 647 (Cat. No. A-21445,
Invitrogen). Arrays were then washed, dried, and immediately scanned
with a GenePix 4000B Fluorescence Scanner (Molecular Devices,
Sunnyvale, CA, USA).

2.4. Microarray data analysis

Fluorescence data were acquired by aligning the Genepix Array List
onto the microarray image using the Genepix Pro analysis software. The
resulting Genepix results files were imported into Invitrogen's
Prospector 5.2 for analysis. The “group characterization” and “two-
group comparison” features in the Immune Response Biomarker
Profiling (IRBP) toolbox within Prospector then enabled M-statistical
analysis of the differential autoantibody expression between the two
groups being compared. Positive hits were determined by a Z-
Factor > 0.4 and a minimum signal intensity of 1500 RFU, which
allows for stringent biomarker selection and minimizes the number of
false positives. Autoantibodies were first sorted into descending order
by difference of prevalence between MS and control groups, and the top
50 most differentially expressed autoantibodies in the MS group were
chosen as potential MS diagnostic biomarkers and tested further.
Additionally, a second round of biomarker selection was carried out
by sorting autoantibodies in descending order by difference of pre-
valence between control and MS groups. This time, the 50 most
differentially expressed autoantibodies in the control group, putatively
reflecting the selective depletion of these blood-borne autoantibodies in
the MS group, were also chosen as potential diagnostic biomarkers and
tested. All data are MIAME compliant and raw data from the micro-
arrays have been deposited in a MIAME compliant database (GEO)
under accession number (GSE95718).

Subjects were randomly split into Testing and Training Sets such
that both sets included cases and controls matched by age and gender.
The Training Set was used to rank candidate protein biomarkers by
their predictive power and to establish the diagnostic logic. The initial
Training Set for the MS group consisted of 26 MS and 16 control
samples; the remaining samples were relegated to the independent
Testing Set, containing 25 MS and 15 control subjects. The predictive
classification accuracy of the selected biomarkers in the Training Set,
Testing Set, and in both sets combined was tested with R's Random
Forest (RF; v 4.6–10), using the default settings (O'Bryant et al., 2014;
Breiman, 2001). Selected biomarkers were tested with the RF model
algorithm, and classification accuracy is reported in a confusion matrix
and misclassifications as an out-of-bag (OOB) error score. Receiver

Table 1
Sample demographics. The number of individuals (n), age, range of age, gender, and
ethnicity are listed for each disease and control group.

Group n Age Gender Ethnicity

(Years) (Range) (% female) (% Caucasian)

Multiple sclerosis 51 48.8 ± 10.7 25–67 75 96
-Relapsing-
remitting

31 45.8 ± 11.1 25–67 81 94

-Secondary
progressive

20 53.5 ± 8.0 36–67 65 100

Controls 31 53.7 ± 13.4 30–79 81 100
Early-stage

Parkinson's
disease

15 63.5 ± 6.8 51–73 80 100

Breast cancer 15 52.3 ± 6.6 45–63 100 87
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Operating Characteristic (ROC) curves, widely used to evaluate the
utility of diagnostic tests, were generated using R (3.02) packages
ROCR (v 1.0-5) and pROC (v 1.7.3) (O'Bryant et al., 2011). Based on the
determined optimal number of autoantibody biomarker panel mem-
bers, a final model was constructed using these biomarkers and their
associated Training Set logic and further tested with the independent
Testing Set subject samples.

Using the same Training and Testing Set strategy outlined above, we
performed an additional round of biomarker discovery using only RF,
instead of prevalence difference, to select potential biomarkers. After
M-statistical analysis by Prospector, the data were analyzed using the
“variable importance” function in RF, which is the prediction accuracy
of the OOB error score reported for each decision tree, and also for each
individual permutated biomarker. The difference between the two
values was averaged over all trees and normalized by the standard
error. The 50 most differentially depleted biomarkers in the MS group
compared to controls based on the normalized variable importance
score were chosen as potential diagnostic biomarkers and further
analyzed for their diagnostic value as reported below.

3. Results

3.1. Selection of a panel of autoantibody biomarkers for diagnosis of MS

We first sought to identify a panel of autoantibodies capable of
detecting the presence of MS pathology in a mixed-subtype population
of MS patients. Serum samples from 51 MS patients with a clinical
diagnosis of either relapsing-remitting MS (RRMS) or secondary
progressive MS (SPMS), the two most prevalent MS subtypes, and
thirty-one age- and gender-matched control samples were randomly
separated into either a Training Set (16 RRMS, 10 SPMS and 16
controls) or Testing Set (15 RRMS, 10 SPMS and 15 controls), each
containing roughly equal proportions of both MS subtypes. Training
and Testing Set sera were used to probe commercially available human
protein microarrays containing 9486 protein targets. Autoantibody
profiles from the MS and control subjects in the Training Set were
compared using Prospector microarray analysis software, which then
identified 54 autoantibodies with significantly (P < 0.05) higher
prevalence in the MS group compared to the control group in the
Training Set as potential diagnostic biomarkers. From this list, the top
50 most differentially expressed autoantibodies in the MS group were
chosen as a working diagnostic biomarker panel.

3.2. Verification of differentially expressed MS biomarkers via Training and
Testing Set analysis

The 50 most differentially expressed autoantibody biomarkers
chosen from the MS Training Set were evaluated for their prediction
accuracy using Random Forest (RF). Using the 50 selected biomarkers in
RF, MS subjects were distinguished from age- and gender-matched
control subjects in the Training Set (n = 42; 26 MS, 16 controls) with
an average 72.4% prediction accuracy based on five replicate runs. We
next evaluated the classification potential of the 50 biomarkers along
with the RF Training Set logic to classify MS in the Testing Set subjects,
an independent group of samples that played no role in biomarker
selection. RF correctly classified an average of 82.5% of MS and
controls among Testing Set subjects (n = 40; 25 MS, 15 controls),
again using an average of five replicate runs.

3.3. Selection and verification of useful MS biomarkers that are selectively
depleted from the blood

Biomarker selection described above was based on the increased
production and expression of autoantibody biomarkers in the blood,
presumably in response to MS-associated cell and tissue debris produc-
tion. With MS known to have a strong autoimmune component, we next

examined the possibility that disease onset and progression may instead
be linked to a selective depletion of autoantibodies that are normally
present in the blood. To test this, we used the autoantibody profile
expression data generated by Prospector from the Training Set samples
described above. A total of 3076 autoantibodies with a significantly
(P < 0.05) lower prevalence in the MS group compared to the control
group were identified. From this list, the 50 most differentially depleted
autoantibodies in the MS group were chosen as the new working
diagnostic biomarker panel. The new panel of depleted MS autoanti-
body biomarkers chosen from the Training Set were re-verified as
significant predictors using RF. MS subjects in the Training Set (n = 42;
26 MS, 16 controls) were distinguished from matched controls with an
average 95.8% prediction accuracy. Furthermore, RF correctly classi-
fied 95.0% of MS and controls among Testing Set subjects (n = 40; 25
MS, 15 controls). Finally, combining both Training and Testing Set
samples and using the Training Set logic, RF successfully distinguished
MS from controls with an overall accuracy of 96.8%. Results for all
Training and Testing Set comparisons mentioned above are presented
as an average of five replicate runs. ROC curve analysis of the overall
utility of the depleted MS biomarkers for detection of MS in the Testing
Set subjects revealed an area under the curve (AUC) of 0.94, indicating
excellent classification accuracy (Fig. 1). Diagnostic sensitivity, speci-
ficity, and positive- and negative-predictive values (PPV and NPV) for
the 50 depleted MS biomarkers used to evaluate the Testing Set subjects
are shown in Tables 2 and 3. Subsequent tests and comparisons carried
out in the present study described below refer to the use of the depleted
autoantibody biomarker panel described here and shown in Supple-
mentary Table 1, unless otherwise noted.

3.4. Exchanging Training and Testing Sets yields similar biomarker panels
with comparable diagnostic accuracy

To further demonstrate and confirm the utility of depleted auto-
antibodies as biomarkers for the detection of MS pathology in a
separate set of patient samples, we carried out a second round of MS

Fig. 1. Biomarker analysis and Receiver Operating Characteristic (ROC) curve assessment
of the utility of autoantibody biomarkers for the detection of MS. ROC assessment of
autoantibody biomarkers for detection of mixed-MS in Testing Set subjects. Comparison
of MS (n = 25) vs. age- and gender-matched controls (n = 15) using a panel of 50
(orange line) or a panel of 3 (red line) MS-specific biomarkers demonstrates that these
biomarker panels can be used to detect MS with high overall accuracy. The dashed line
represents the line of no discrimination. The ROC AUC, sensitivity, and specificity values
for the panels of 50 and 3 biomarkers are shown in Table 3. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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biomarker discovery. In this round, we exchanged the subjects used
in the Training and Testing Sets and compared the identities
and diagnostic performance of the second round of depleted MS
biomarkers with those chosen in the first round. There was a 60%
overlap between the second round biomarkers and those chosen in the
first round. Using this new panel of 50 second round biomarkers, RF
was able to correctly classify over 99.0% of MS and controls in Testing
Set subjects (sensitivity = 100.0%; specificity = 93.8%; PPV = 96.3%;
NPV = 100.0%; ROC AUC = 1).

3.5. Validation of the MS biomarker panel using two biomarker selection
strategies: RF vs. prevalence difference

We next carried out an additional and unbiased MS biomarker
selection process where RF was allowed to independently choose 50
potentially useful depleted MS biomarkers, instead of ranking biomar-
kers based on prevalence difference through Prospector as described
above. The panel of 50 RF-selected biomarkers (Supplementary
Table 2) was able to correctly classify MS and controls in Testing Set
subjects with 92.5% overall accuracy based on an average of five
replicate runs, thus with comparable accuracy to both panels derived
from prevalence difference described above. Importantly, 38 of 50
(76%) of the RF-selected biomarkers overlapped with the differentially
depleted biomarkers that were selected based on prevalence difference
as described above.

3.6. Fewer than 50 depleted autoantibody biomarkers are sufficient for
accurate detection of MS

To determine the minimum number of autoantibody biomarkers
required to achieve the best diagnostic accuracy, the 50 depleted MS
biomarkers were first sorted from the highest to lowest relative

importance. Then, biomarkers were successively removed one by one
from the bottom of the list until the overall diagnostic accuracy based
on the biomarkers remaining began to decline significantly. Using this
approach, we determined that a panel of three biomarkers (the top
three biomarkers presented in Supplementary Table 1) was the mini-
mum number required to maintain an effective diagnostic accuracy in
Testing Set subjects, demonstrating an overall accuracy of 92.5%
(sensitivity = 96.0%; specificity = 86.7%; ROC AUC = 0.95) for dis-
tinguishing MS subjects from age- and gender-matched controls (Fig. 1;
Tables 2, 3).

3.7. Disease specificity of the selected depleted biomarkers for MS

We next evaluated the disease specificity of the original selected
panel of depleted biomarkers described above and in Supplementary
Table 1 for the detection of MS, with the goal of determining whether
these biomarkers could successfully differentiate MS subjects from
those with other neurological and non-neurological diseases. To
eliminate the possibility that the MS biomarkers were simply detecting
nonspecific disease, the same 25 MS sera from Testing Set subjects were
compared to sera obtained from 15 subjects with stage 3–4 breast
cancer and 15 subjects with early-stage PD. Using the original panel of
50 depleted biomarkers, MS sera were readily distinguished from breast
cancer sera with an overall accuracy of 100.0% (sensitivity = 100.0%;
specificity = 100.0%; ROC AUC = 1) (Tables 2, 3). By contrast, MS
subjects could not be accurately distinguished from early-stage PD
subjects, with results showing 40.0% overall accuracy (sensitiv-
ity = 48.0%; specificity = 26.7.3%; ROC AUC = 0.72). The inability
to distinguish MS from early-stage PD could indicate a substantial
overlap in disease pathology, leading to the production of comparable
patterns of disease-associated biomarkers.

3.8. Subtyping of MS: discrete autoantibody biomarker panels can
distinguish relapsing-remitting MS from secondary progressive MS

We next asked if autoantibody biomarkers could be used to
distinguish between different subtypes of MS. Currently, while the
majority of MS patients are initially diagnosed as RRMS, a significant
fraction of these patients will eventually progress to SPMS for unknown
reasons. To address this aspect of MS disease transition and progression,
we performed two additional rounds of biomarker discovery to
generate panels of subtype-specific expression biomarkers. RRMS
(n = 31) and SPMS (n = 20) samples were separated into a Training
(n = 26; 16 RRMS, 10 SPMS) and Testing Set (n = 25; 15 RRMS, 10
SPMS), using the same strategy as described above. The top 50 most
differentially expressed autoantibody biomarkers in each MS subtype
compared to the other were selected and verified as significant using
the methods described above. Using RRMS-specific biomarkers and the
RF logic derived from the Training Set, RRMS sera were readily
distinguished from SPMS sera with an overall accuracy of 100% in
both Training and Testing Set comparisons. Similarly, using SPMS-
specific biomarkers and RF logic derived from the Training Set, SPMS
sera were readily distinguished from RRMS sera with an overall
accuracy of 96.2% in the Training Set, and 92.0% in the Testing Set.

Table 2
Diagnostic results using a panel of 50 and a panel of 3 biomarkers to mixed (both subtypes
included) MS. Diagnostic performance was assessed using RF. Using Testing Set samples,
RF successfully distinguished mixed subtype MS subjects (n = 25) from age-matched and
gender-matched controls as well as those with breast cancer with high overall accuracies.
RF was unable to accurately distinguish MS subjects from those with early-stage PD using
the selected biomarkers.

50 markers 3 markers

MS (n = 25)
vs.

Age
matched
controls

Early-
stage
PD

Breast
cancer

Age
matched
controls

Early-
stage
PD

Breast
cancer

n 15 15 15 15 15 15
Sensitivity 100.0 48.0 100.0 100.0 76.0 100.0
Specificity 86.7 26.7 100.0 86.7 6.7 100.0
PPV 92.6 52.2 100.0 92.6 57.6 100.0
NPV 100.0 23.5 100.0 100.0 14.3 100.0
Overall

accuracy
%

95.0 40.0 100.0 95.0 50.0 100.0

Overall error
%

5.0 60.0 0.0 5.0 50.0 0.0

Table 3
ROC curve assessment of the diagnostic utility of the top 50 and top 3 depleted, mixed subtype MS biomarkers. ROC curve analyses (Testing Set subjects only) showing the diagnostic
utility of the top 50 and top 3 depleted biomarkers for distinguishing MS subjects from age-matched controls and from early-stage PD and breast cancer. Area under the curve (AUC)
values at 95% confidence are listed along with values for sensitivity and specificity derived from ROC curve output data.

MS (n = 25) vs. 50 markers 3 markers

AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Age matched controls (n = 15) 0.94 (0.82, 1) 1 (1, 1) 0.93 (0.80, 1) 0.96 (0.87, 1) 0.96 (0.88, 1) 0.93 (0.80, 1)
Early-stage PD (n = 15) 0.72 (0.56, 0.88) 0.80 (0.64, 0.96) 0.60 (0.33, 0.87) 0.61 (0.44, 0.78) 0.48 (0.32, 0.68) 0.87 (0.67, 1)
Breast cancer (n = 15) 1 1 1 1 1 1
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Results from ROC curve analyses of these comparisons are presented in
Fig. 2, and the identities of the biomarkers in the RRMS-specific and
SPMS-specific panels are presented in Supplementary Tables 3 and 4,
respectively. These results confirm that, although RRMS and SPMS are
different stages of the same disease and are expected to share
biomarkers, the panels of subtype-specific autoantibody biomarkers
selected here along with their corresponding diagnostic logic were
capable of differentiating the pathologies associated with each subtype
of MS progression.

4. Discussion

Previously published work by our group has demonstrated the
utility and potential efficacy of using human protein microarrays as an
accurate and reliable platform for the discovery of blood-based auto-
antibodies that serve as powerful diagnostic indicators or biomarkers of
ongoing disease (E. Nagele et al., 2011; Han et al., 2012; DeMarshall
et al., 2016; C.A. DeMarshall et al., 2015). The strength and versatility
of this novel approach to MS and other disease diagnostics lies in the
proposed role of autoantibodies in the maintenance of body-wide
homeostasis through clearance of tissue debris produced in response
to ongoing pathology (Nagele et al., 2013). Our biomarker discovery
strategy has focused on identifying differentially expressed autoanti-
bodies in disease groups, such as early- and mild- moderate stages of
Alzheimer's disease (AD) and Parkinson's disease (PD), relative to
healthy control subjects. Using this approach we were not only able
to diagnose and stage early phases of both of these diseases, but also to
differentiate them from other closely related neurological diseases with
high overall accuracy.

In this study, our objective was to determine if panels of blood-
based autoantibody biomarkers can be identified with the potential to
diagnose MS and distinguish different clinical subtypes of the disease.
Sera from a total of 112 subjects were analyzed, including 51 mixed-MS
patients diagnosed with either RRMS or SPMS, the two most prevalent
MS subtypes that together constitute the vast majority of all diagnosed
cases. Using a panel of 50 differentially depleted autoantibody biomar-

kers, we demonstrate here that it is possible to distinguish MS subjects
from healthy age- and gender-matched control subjects with high
overall accuracy, sensitivity, and specificity. Additionally, the selected
biomarker panel was also capable of successfully differentiating MS
subjects from those with stage 3–4 breast cancer, a non-neurodegen-
erative control group. Lastly, subtype-specific autoantibody biomarker
panels and their corresponding diagnostic logic were capable of
successfully differentiating between RRMS and SPMS, two clinically
relevant MS subtypes representing two discrete phases of the same
disease.

The autoantibody biomarker panel used here to distinguish MS
patients from matched controls (see Supplementary Table 1) targets a
wide variety of constituent proteins, but this list does not include the
more well-known proteins that have already been linked to this disease.
Identified biomarkers include dehydrogenases, regulatory proteins,
voltage-gated potassium channel subunits, kinases, and transcription
factors, among others. Based on available literature and database
searches, some proposed functions of these selected biomarkers include
neuronal differentiation, nerve signal regulation, innate immunity
processes, cell motility, RNA modification, transcription/translation
regulation, and glycolipid biosynthesis. Although much research effort
in the field of MS has previously concentrated on attempts to utilize
autoantibodies to specific myelin components as biomarkers of the
disease, results thus far have been disappointing and the focus is now
shifting towards including a host of antibodies to other proteins as
potential biomarkers as described in a recent review by D'Ambrosio
et al. (2015). As we continue to learn more about the triggers and
mediators of MS pathology and, in turn, MS subtype-specific pathology,
we will undoubtedly need to look “outside of the box” containing
suspected favorites to discover novel biomarkers which may be the key
to elucidating the underlying mechanisms of the disease.

As mentioned above, in previous studies detailing the discovery and
testing of blood-based autoantibody biomarkers with utility for diag-
nosing and staging of AD and PD, the most useful biomarkers selected
were autoantibodies exhibiting a higher titer in diseased subjects than
in controls (DeMarshall et al., 2016; C.A. DeMarshall et al., 2015; Han
et al., 2012; E. Nagele et al., 2011). This pattern agrees with the concept
that these autoantibodies are produced in response to debris emanating
from regions of pathology, implying a function for autoantibodies in the
clearance of this debris from the blood and tissues (C. DeMarshall et al.,
2015). It also suggests that such biomarkers would be useful for disease
monitoring in patients under treatment by their physicians or in clinical
trials, where a beneficial effect would coincide with reduction in debris
production from the region of pathology as well as a corresponding
reduction in the titers of autoantibodies charged with their clearance.
By contrast, in the present study on MS, autoantibodies with lower or
depleted titers were found to be the most sensitive, accurate and thus
useful biomarkers for disease diagnosis. This suggests that the binding
of certain autoantibodies to available targets in regions associated with
MS pathology is driving their selective depletion, and could also be
playing a causal role in MS. In line with this concept, we have
previously provided strong evidence that brain-reactive autoantibodies
are ubiquitous in human blood and that, under conditions of blood-
brain barrier compromise, they gain access to the brain interstitium and
can bind to exposed targets on the surfaces of neurons and glia (Levin
et al., 2010; R.G. Nagele et al., 2011; Nagele et al., 2013). Indeed, in the
brains of patients with Alzheimer's disease, the same neurons showing
particular vulnerability to AD pathological changes, including intra-
neuronal beta-amyloid deposition, are also the cells that are the most
immunoglobulin G (IgG)-positive. This raises the possibility that
chronic IgG binding to neuronal surfaces under conditions of blood-
brain barrier breach may play a role in AD pathological changes and
facilitate amyloid deposition in the affected brain (R.G. Nagele et al.,
2011). Here, we propose that this same mechanism is also operating in
MS patients, where transient or chronic access of autoantibodies to
their targets on the myelin sheath or axonal membranes at the nodes of

Fig. 2. Biomarker analysis and Receiver Operating Characteristic (ROC) curve assessment
of the utility of autoantibody biomarkers for the subtyping and pathological progression
of MS. Comparison of Testing Set relapsing-remitting MS (RRMS) subjects (n = 15) vs.
Testing Set secondary progressive MS subjects (n = 10) using a panel of 50 RRMS (red
line) or SPMS (orange line) specific biomarkers demonstrates that these biomarkers can
be used to accurately distinguish between these two different stages of MS progression.
(For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Ranvier contribute to a dampening or blocking of nerve impulse
transmission at the affected region. Of course, causal factors precipitat-
ing the intervals of access of autoantibodies to neuronal targets are
unresolved, but are likely to involve transient increases in blood-brain
barrier permeability. Further work is required to determine if this is the
case.

In addition to autoantibodies being pursued as potential biomarkers
for the diagnosis and progression of MS, recent studies have highlighted
many other promising candidates that include a wide range of biofluid
and imaging biomarkers. For example, a study by Villoslada et al.
identified specific patterns of serum metabolites, including hormones,
lipids, and amino acids associated with MS and the severity of disease
expression (Villoslada et al., 2017). Additionally, Lim et al. examined
tryptophan metabolism and were able to use serum kynurenine path-
way signatures to successfully differentiate between clinical MS sub-
types with an accuracy of 83% in Testing Set subjects (Lim et al., 2017).
Recent work by Håkansson et al. evaluated a variety of known
neurodegenerative and neuroinflammatory biomarkers in CSF for their
prognostic value in patients with clinically isolated syndrome and
RRMS. Results revealed that higher baseline levels of neurofilament
light chain predicted disease activity in patients with 85% accuracy
over the course of a 2 year follow-up period (Hakansson et al., 2017).
Lastly, Shepard et al. described a novel mapping technique to measure
quantitative increases in thalamic T2 values in RRMS subjects that was
shown to have utility in distinguishing them from healthy control
subjects with high accuracy (ROC AUC = 0.913) (Shepherd et al.,
2017).

This study has a number of strengths and weaknesses. First, as major
strengths, it describes a potential diagnostic approach to MS that
employs only a small volume of blood, is relatively non-invasive, and
independent of diagnostic imaging such as MRI. Another strength is the
ability to develop and use separate panels of autoantibody biomarkers
to distinguish between RRMS and SPMS, two clinically distinct subtypes
with distinctive pathological disease courses. This finding supports our
hypothesis that autoantibody profiles can change with the progression
of disease, with each disease and disease stage having its own unique
autoantibody signature or profile. We propose that autoantibody
profiles truly are responsive to and reflect disease-associated cell and
tissue debris production in regions of evolving pathology or the initial
binding of brain-reactive autoantibodies to newly available targets as a
result of blood-brain barrier compromise. If true, then this information
may be useful for determining which profile changes might indicate
whether or not a patient will progress or has progressed from one stage
to the next, such as in the transition from RRMS to SPMS.

This study also has some weaknesses. First, it is a small proof of
concept study intended to address the question of whether our
diagnostic strategy with autoantibodies as biomarkers and human
protein microarrays as a detection platform can be used to detect MS
and differentiate between different clinical MS subtypes. Accordingly,
we acknowledge that additional studies using larger cohorts will
certainly be needed to confirm the encouraging results presented here.
Another weakness is the inability of the chosen biomarker panel, at
least using this small sample cohort, to distinguish MS subjects with
high accuracy from those with early-stage PD, a closely related
neurodegenerative disorder. This could potentially be due to an overlap
in pathology-specific biomarkers. Fine-tuning the selection of biomar-
kers that are better able to delineate these two diseases will no doubt
require a larger cohort of MS and early-stage PD subjects. However, as a
practical note, even if unresolved, the strikingly different symptom
profiles between MS and PD patients make it unlikely that one disease
would be mistaken for the other in the clinical setting. In addition, our
previous study has shown that PD biomarkers can readily distinguish
PD from MS (C.A. DeMarshall et al., 2015) Finally, due primarily to
difficulties in procuring sufficient numbers of samples, we were unable
at this time to include or test the accuracy of our MS biomarker panels
on primary progressive or progressive-relapsing MS patient samples in

this study.
In conclusion, we report data representing a “proof of concept”

study for a sensitive and specific blood test for the general diagnosis of
MS and two of its subtypes. MS represents a wide range of symptoms,
clinical presentations, and natural histories, and therefore encompasses
a truly heterogeneous patient population – conditions that can often
complicate a straightforward diagnosis. Monitoring the course and
progression of the disease is dependent on early and accurate diagnoses,
which allow earlier treatment intervention. While patients will un-
doubtedly benefit from earlier, accurate diagnosis and monitoring
throughout the course of their disease, the lack of a well-developed,
readily accessible and affordable diagnostic tool has hindered progress
in the fields of MS research and treatment. For instance, the availability
of a diagnostic blood test would be useful in differentiating between a
patient experiencing a clinically isolated syndrome triggered by MS and
one that is due to other causes. Such a diagnostic would also be
expected to have utility as a screening tool that would allow physicians
to appropriately direct their patients to seek additional confirmatory
tests for MS. In the long term, our diagnostic strategy may also be
applicable to verify early enrollment of patients into clinical trials, as
well as serve as a means to monitor a patient's response to a particular
treatment regimen through documentation of the subsequent loss of
MS-relevant biomarkers. It could also be used as a prognostic indicator
of impending relapses or worsening conditions/disease progression, as
well as the transition between clinical subtypes. Lastly, we have
previously demonstrated the utility of using autoantibodies as sensitive
and specific biomarkers of early-stage AD and PD. Now, the addition of
MS to this list further validates the potential of our strategy as a multi-
disease diagnostic approach. We believe that this approach can be
applied to most known diseases, regardless of type or tissue of origin;
however, the strategy for biomarker selection may need to be tailored
to best reflect the disease stage and progression of pathology specific to
each disease.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jneuroim.2017.05.010.
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